


# **Pilot Operating handbook**

# And

# Flight training supplement

# **AEROPRO + EuroFOX Aviation**

# **EuroFOX**

Aircraft Type:

# **EuroFOX Tail wheel Version**

Serial Number:

**Registration:** 

Date of Issue: Feb 2018

Stamp, Signature

This aircraft kit was manufactured in accordance with CS VLA airworthiness standards and approved by the UK LAA. It does not conform to standard category airworthiness requirements.

# AIRCRAFT DATA

|           | Туре                          | Production                   | Serial<br>Number: | Year of<br>production |
|-----------|-------------------------------|------------------------------|-------------------|-----------------------|
| Fuselage  | EUROFOX Tail<br>Wheel         | AEROPRO                      |                   |                       |
| Engine    | ROTAX 912<br>ULS              | BOMBARDIE<br>R-ROTAX<br>GMBH |                   |                       |
|           | 912iS                         | AUSTRIA                      |                   |                       |
|           | 912ULS EP<br>modified         | Edge<br>Performance          |                   |                       |
|           |                               | Norway                       |                   |                       |
| Propeller | SR200                         |                              |                   |                       |
|           | Propuls                       | Woodcomp<br>Czech Rep        |                   |                       |
|           | DUC Swirl<br>and<br>Windspoon | DUC<br>France                |                   |                       |

Signature

Stamp

# 0.1 RECORD OF REVISIONS

Any revisions or amendments to the present manual shall be issued in the form of bulletins with attached new pages. It is in the interests of every user to enter such revision into the table of revisions and to replace the existing page by the new one. The revised or corrected text shall be indicated by a vertical line on left page margin and the page shall bear revision number and date of its issue.

| Rev.<br>No. | Pages Affected                             | Date of Issue | Bulletin<br>Number | New Page<br>Inserted          | Signature |
|-------------|--------------------------------------------|---------------|--------------------|-------------------------------|-----------|
| 1           | Initial issue                              | Nov 11        |                    |                               |           |
| 2           | Parachute<br>added                         | Mar 13        |                    |                               |           |
| 3           | 912iS added                                | April 14      |                    |                               |           |
| 4           | Operating<br>limits clarified.<br>Chap 3.5 | October 14    |                    |                               |           |
| 5           | Additional prop                            | Jan 2015      |                    |                               |           |
| 6           | 4 wing tanks                               | Aug 2017      |                    | Para 2.3<br>modified          |           |
| 7           | 120hp engine<br>upgrade                    | Feb 2018      |                    | Para 2.2<br>new<br>Para 7 new |           |
|             |                                            |               |                    |                               |           |
|             |                                            |               |                    |                               |           |
|             |                                            |               |                    |                               |           |

### TABLE OF CONTENTS:

| 0.1                | RECORD OF REVISIONS 1                                    | -4 |
|--------------------|----------------------------------------------------------|----|
| 1. (               | GENERAL INFORMATION 1                                    | -9 |
| 1.1                | INTRODUCTION1                                            | -9 |
| 1.2                | CERTIFICATION BASIS 1                                    | -9 |
| 1.3                |                                                          |    |
| 1.4                | WARNING, CAUTION AND NOTE 1                              | -9 |
| <b>2.</b> <i>A</i> | AIRCRAFT AND SYSTEMS DESCRIPTION 2-2                     | 10 |
| 2.1                | Engine                                                   | 11 |
| 2.2                | THE 912ULS EP MODIFIED 120 HP ENGINE                     | 12 |
| 2.3                | PROPELLER                                                | 13 |
| 2.4                | FUEL AND FUEL CAPACITY 2-2                               | 13 |
| 2.5                | -                                                        | 15 |
| 2.6                | OPERATING WEIGHTS AND LOADING (OCCUPANTS, BAGGAGE, FUEL, |    |
| BAI                | LLAST)                                                   |    |
| 2.7                | CABIN OVERVIEW (GUIDE ONLY)                              | 17 |
| 3. (               | OPERATING LIMITATIONS 3-2                                | 23 |
| 3.1                | STALL SPEED AT MAXIMUM TAKEOFF WEIGHT (VS AND VSO)       | 23 |
| 3.2                | FLAPS EXTENDED SPEED RANGE (VSO TO VFE) MPH 3-2          | 24 |
| 3.3                | MAXIMUM MANEUVERING SPEED (VA) MPH 3-2                   | 24 |
| 3.4                | NEVER EXCEED SPEED (V <sub>NE</sub> ) MPH 3-2            | 24 |
| 3.5                | CROSSWIND LIMITATION 3-2                                 | 24 |
| 3.6                | SERVICE CEILING                                          | 25 |
| 3.7                |                                                          | -  |
| 3.8                | PROHIBITED MANOEUVERS                                    | 25 |
| 3.9                | OTHER LIMITATIONS                                        | 25 |
| <b>4.</b> V        | WEIGHT AND BALANCE INFORMATION 4-2                       | 27 |
| 4.1                | EQUIPMENT LIST POSSIBLE                                  | 27 |
| 4.2                |                                                          |    |
| 4                  | 4.2.1 Aircraft weight and balance statement              | 28 |
| 4                  | 4.2.2 Weight and balance determination for flight 4-2    |    |
| 4                  | 4.2.3 Detailed calculation of CG position 4              | 30 |
| 5. I               | PERFORMANCE                                              | 32 |

|    | 5.1   | TAKEOFF AND LANDING DISTANCES (BASED ON 912ULS)             | 5-33 |
|----|-------|-------------------------------------------------------------|------|
|    | 5.2   | RATE OF CLIMB                                               | 5-33 |
|    | 5.3   | CRUISE SPEEDS MPH                                           | 5-33 |
|    | 5.4   | RPM                                                         | 5-34 |
|    | 5.5   | FUEL CONSUMPTION                                            | 5-34 |
|    | 5.6   | OTHER PERFORMANCE DATA                                      | 5-34 |
| 6. | PER   | FORMANCE 912IS                                              | 6-35 |
|    | 6.1   | STARTUP PROCEDURE 912IS                                     | 6-36 |
|    | 6.2   | TAKEOFF AND LANDING DISTANCES                               | 6-37 |
|    | 6.3   | RATE OF CLIMB                                               | 6-37 |
|    | 6.4   | CRUISE SPEEDS MPH                                           | 6-37 |
|    | 6.5   | FUEL CONSUMPTION                                            | 6-38 |
|    | 6.6   | OTHER PERFORMANCE DATA                                      | 6-38 |
| 7. | PER   | FORMANCE 912ULS EP MODIFIED 120HP                           | 7-39 |
|    | 7.1   | STARTUP PROCEDURE 912ULS EP MODIFIED 120HP                  | 7-40 |
|    | 7.2   | TAKEOFF AND LANDING DISTANCES @ MAUW, CALM CONDITIONS       |      |
|    | 7.3   | RATE OF CLIMB                                               |      |
|    | 7.4   | CRUISE SPEEDS MPH                                           |      |
|    | 7.5   | FUEL CONSUMPTION                                            | 7-43 |
|    | 7.6   | OTHER PERFORMANCE DATA                                      | 7-43 |
| 8. | EMI   | ERGENCY PROCEDURES                                          | 8-44 |
|    | 8.1   | INTRODUCTION                                                | 8-44 |
|    | 8.2   | ENGINE FAILURE AND EMERGENCY LANDINGS                       | 8-44 |
|    | 8.2.1 | Engine Failure during Take-Off Run                          | 8-44 |
|    | 8.2.2 | e e e                                                       |      |
|    | 8.2.3 | In-flight Engine Failure                                    | 8-45 |
|    | 8.2.4 | Additional information on engine failure and emergency land | ling |
|    | proc  | edures                                                      | 8-45 |
|    | 8.2.5 | 5 Carburettor Icing                                         | 8-46 |
|    | 8.3   | IN-FLIGHT ENGINE STARTING                                   |      |
|    | 8.4   | FIRES                                                       |      |
|    | 8.4.1 |                                                             |      |
|    | 8.4.2 |                                                             |      |
|    | 8.4.3 |                                                             |      |
|    | 8.4.4 | - $        -$                                               |      |
|    | 8.5   | GLIDING                                                     | 8-50 |

|    | 8.6          | PRECAUTIONARY LANDING                      |    |
|----|--------------|--------------------------------------------|----|
|    | 8.7          | BLOWN-OUT TYRE LANDING                     |    |
|    | 8.8          | DAMAGED LANDING GEAR LANDING               |    |
|    | 8.9          | VIBRATIONS OR OTHER ENGINE PROBLEM         |    |
|    | 8.10         | INADVERTENT ICING ENCOUNTERED              |    |
|    | 8.11         | EXTREME TURBULENCE ENCOUNTERED             |    |
|    | 8.12         | ELECTRICAL SYSTEM MALFUNCTIONS             |    |
|    | 8.12         |                                            |    |
|    | 8.13         | INADVERTENT STALL AND SPIN RECOVERY        | 54 |
|    | 8.13         |                                            |    |
|    |              | <i>l occur:</i>                            | 54 |
|    | 8.13         | J                                          |    |
|    | spin         | <i>occurs:</i>                             | 54 |
| 9. | NO           | RMAL PROCEDURES9-                          | 55 |
|    | 9.1          | PRE-FLIGHT INSPECTION                      | 55 |
|    | 9.1.         | 1 Daily Preparation                        | 56 |
|    | 9.1.2        |                                            |    |
|    | 9.1.         |                                            |    |
|    | 9.2          | ENGINE STARTING                            |    |
|    | 9.2.         | 1 Use of External Power Supply             | 60 |
|    | 9.2.2        |                                            |    |
|    | 9.3          | TAXIING                                    | 61 |
|    | 9.3.         | 1 Prior to Taxiing9-                       | 61 |
|    | 9.3.2        | 2 Taxiing                                  | 62 |
|    | 9.4          | NORMAL TAKEOFF                             | 62 |
|    | 9.4.         | 1 Prior to Take-Off                        | 62 |
|    | 9.4.2        | 2 Take-Off                                 | 63 |
|    | 9.5          | Best angle of climb speed $(V_X)$          | 64 |
|    | 9.5.         | 1 Climbing                                 | 64 |
|    | 9.6          | BEST RATE OF CLIMB SPEED (V <sub>y</sub> ) | 64 |
|    | 9.6.         | 1 Climbing                                 | 64 |
|    | 9.7          | CRUISE                                     | 64 |
|    | 9.7.         | 1 Cruise Flight                            | 64 |
|    | 9.8          | APPROACH                                   | 65 |
|    | 9.8.         | 1 Descent                                  | 65 |
|    | 9.8.2        | 2 Downwind                                 | 66 |
|    | 9.9          | NORMAL LANDING                             | 66 |
|    | <i>9.9</i> . | 1 On Base Leg                              | 66 |
|    |              |                                            |    |

| 9.9        | 0.2 On Final                                          |       |
|------------|-------------------------------------------------------|-------|
| 9.9        | 0.3 Landing                                           |       |
| 9.9        | 9.4 After landing                                     |       |
| 9.9        |                                                       |       |
| 9.9        |                                                       |       |
| 9.10       | SHORT FIELD TAKE OFF AND LANDING PROCEDURES           |       |
| 9.11       | BALKED LANDING PROCEDURES                             |       |
| 9.12       | INFORMATION ON STALLS, SPINS AND ANY OTHER USEFUL PIL | .OT   |
| INFOR      | RMATION                                               |       |
| 9.1        | 2.1 Rain                                              |       |
| 10.        | AIRCRAFT GROUND HANDLING AND SERVICING .              | 10-71 |
| 10.1       | SERVICING FUEL, OIL, COOLANT                          | 10-71 |
| 10.        | 1.1 Servicing fuel                                    |       |
| 10.        | 1.2 Servicing oil                                     | 10-71 |
| 10.        | 1.3 Servicing coolant                                 |       |
| 10.2       | LANDING GEAR TYRE DIMENSION AND PRESSURE              | 10-72 |
| 10.3       | GROUND HANDLING AND TIE-DOWN INSTRUCTIONS             | 10-72 |
| 10.        | 3.1 Aircraft moving instruction                       | 10-72 |
| 10.        | 3.2 Aircraft tie-down instruction                     | 10-73 |
| <b>11.</b> | REQUIRED PLACARDS AND MARKINGS                        | 11-74 |
| 11.1       | AIRSPEED INDICATOR RANGE MARKINGS AND OVERVIEW OF     | SPEED |
| LIMIT      | rs:11-74                                              |       |
| 11.2       | OPERATING LIMITATION PLACARD ON INSTRUMENT PANEL      | 11-75 |
| 11.3       | IF PARACHUTE FITTED                                   | 11-75 |
| 11.4       | PASSENGER WARNING                                     | 11-75 |
| 11.5       | "NO INTENTIONAL SPINS"                                | 11-76 |
| 11.6       | MISCELLANEOUS PLACARDS AND MARKINGS                   | 11-76 |
| 12.        | SUPPLEMENTARY INFORMATION                             | 12-77 |
| 12.1       | FAMILIARISATION FLIGHT PROCEDURES                     | 12-77 |
| 12.2       | PILOT OPERATING ADVISORIES                            | 12-77 |
| 12.3       | FURTHER INFORMATION                                   | 12-77 |
| 12.4       | STARTING AND PRE-FLIGHT CHECKS                        | 12-77 |

# 1. General information

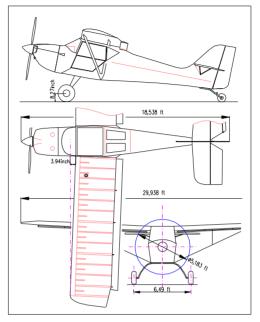
### 1.1 Introduction

This handbook is provided with your aircraft to allow you to attain as much knowledge about the aircraft and its operation as possible. Read this manual thoroughly before your first flight and make sure you understand all the information contained here. This aircraft is equipped with a non-certified engine. When flying the aircraft always ensure that a safe landing would be possible in the event of loss of engine power. Pay attention to the fact that you as the pilot are fully responsible for safety of your passengers and persons or property on the ground.

# **1.2 Certification Basis**

This aircraft kit was manufactured in accordance with CS-VLA airworthiness standards approved by the UK LAA

### 1.3 Manufacturer


AEROPRO s.r.o Dlhá 126 949 07 Nitra Slovak Republic www.aeropro.sk

UK and Ireland Distributor www.eurofoxuk.co.uk

### 1.4 Warning, Caution and Note

In this handbook the following is used to highlight especially important information:

| WARNING | Information which could prevent personnel injury or loss of life |
|---------|------------------------------------------------------------------|
| CAUTION | Information which could prevent damage to equipment              |
| NOTE    | Information of special importance to pilots                      |



# 2. Aircraft and Systems Description

The EuroFOX is designed as a high-wing monoplane. A two-spar wing is equipped with flaperons. The fuselage is an open truss structure welded with steel tubes. The tail unit is formed from a lattice-work tube frame. The Aircraft is equipped with tricycle landing gear and incorporates a steerable nose wheel.

| Wing span                                                | 9,125 m                 |
|----------------------------------------------------------|-------------------------|
| Length                                                   | 5,605 m                 |
| Height                                                   | 2,25 m                  |
| Wing area with flap                                      | 11,4 m²                 |
| Chord length without flap                                | 1,12 m                  |
| with flap                                                | 1,3 m                   |
| Wing loading                                             | 39,47 kgm <sup>-2</sup> |
| Aspect-ratio                                             | 7,3                     |
| Propeller clearance in flight condition (Woodcomp SR200) | )0,220 m                |

# 2.1 Engine

The EuroFOX is powered by ROTAX 912 UL, 912ULS, 914UL, 912iS Sport or 912ULS modified (120hp) engines. It is a four-cylinder, fourstroke, horizontally opposed-cylinder, centre-camshaft engine with overhead valves. Engine cooling is of a combined type, cylinder heads are water-cooled, while cylinders are air-cooled. The engine has dry sump lubrication. The ignition system is of a dual, distributor less and capacitor flywheel magneto type. The engine is equipped with an electric starter, AC generator and a mechanical fuel delivery pump, with optional additional electric pump. The propeller is powered from an integrated reduction gear with mechanical damping.

#### Engine manufacturer.....ROTAX GmbH., Austria

| Engine modelROTAX 912 ULS 100hp                                                                                     |           |            |      |      |                       |
|---------------------------------------------------------------------------------------------------------------------|-----------|------------|------|------|-----------------------|
| Max. power                                                                                                          |           | - take-of  | ʻf   |      | 73.5 kW / 100 HP      |
|                                                                                                                     |           | - continu  | Jous |      | 69.0 kW / 94 HP       |
| Max. engine speed                                                                                                   | d (MSL)   | - take-o   | off  | 5800 | ) r.p.m. (max. 5 min) |
|                                                                                                                     |           | - continu  | Jous |      | 5500 r.p.m.           |
| Max. cooling liquid                                                                                                 | d tempera | ature      |      |      | 120 °C                |
| Max. oil temperatu                                                                                                  | ıre       |            |      |      | 130 °C                |
| Oil pressure                                                                                                        | - minim   | um         |      |      | 0.8 bar               |
|                                                                                                                     | - maxim   | um         |      |      | 7 bar                 |
| Oil consumption                                                                                                     |           |            |      |      | max. 0.1 l/h          |
| Fuel pressure                                                                                                       | - minim   | um         |      |      | 0.15 bar              |
|                                                                                                                     | - maxim   | um         |      |      | 0.5 bar               |
| Consumption at st                                                                                                   | arting    |            |      |      | 16.2 l/h              |
| Consumption at 7                                                                                                    | 5% of po  | wer rating | 9    |      | 12.1 l/h              |
| Specific consumption                                                                                                | tion      |            |      |      | 285 g/kWh             |
| Fuel pressure                                                                                                       | - minim   | um         |      |      | 0.15 bar              |
|                                                                                                                     | - maxim   | um         |      |      | 0.40 bar              |
| Propeller gearbox                                                                                                   | reductior | n ration   |      |      | 2.43 : 1              |
| For more details see <b>Operator's Manual for all versions of Rotax</b><br><b>912/914</b> supplied with the engine. |           |            |      |      |                       |

# 2.2 The 912ULS EP Modified 120 hp engine

| Engine manufacturerROTAX GmbH., Austria. |                            |                   |                          |  |  |
|------------------------------------------|----------------------------|-------------------|--------------------------|--|--|
| Modification - Edge Performance, Norway  |                            |                   |                          |  |  |
| Engine model RO                          | TAX 912                    | ULS EP modified 1 | 20 hp                    |  |  |
| Max. power                               |                            | - take-off        | 120 HP                   |  |  |
|                                          |                            | - continuous      | 117 HP                   |  |  |
| Max. engine speed                        | d (MSL)                    | - take-off        | 5800 r.p.m. (max. 5 min) |  |  |
|                                          |                            | - continuous      | 5500 r.p.m.              |  |  |
| Max. cooling liquid                      | d tempera                  | ature             | 120 °C                   |  |  |
| Max. oil temperatu                       | Max. oil temperature130 °C |                   |                          |  |  |
| Min. oil temperature50 °C                |                            |                   |                          |  |  |
| Oil pressure                             | - minim                    | um                | 0.8 bar                  |  |  |
|                                          | - maxim                    | 1um               | 7 bar                    |  |  |
| Oil consumption                          |                            |                   | max. 0.1 l/h             |  |  |
| Fuel pressure                            | - minim                    | um                |                          |  |  |
|                                          | - Norma                    | al                | 2.2 - 3.1 bar            |  |  |
|                                          | - maxim                    | 1um               | 3.5 bar                  |  |  |
| Max. EGT temperature                     |                            |                   |                          |  |  |
| Caution EGT temp                         | perature                   |                   | 800 °C                   |  |  |
| Propeller gearbox                        | reductior                  | n ration          | 2.43 : 1                 |  |  |

#### WARNING

This aircraft is equipped with non-certified engine.

When flying the aircraft always ensure that a safe landing would be possible in the event of loss of engine power. The pilot is fully responsible for consequences of such failure.

### 2.3 Propeller

Four ground adjustable propellers are approved on the EuroFOX with 912ULS or 912iS engines.

Duc Windspoon is specifically for aerotowing. The Woodcomp Propuls or the Woodcomp Sr200 are standard issue with the kit, the DUC swirl is an upgrade option. For general flying all these 3 props are fine, perhaps the Propuls being the smoothest, but it can vary from one engine to another.

For setting up the pitch of these props, please refer to the build manual.

For additional propeller information see **Operators Manual and Technical description** supplied with the propeller.

# 2.4 Fuel and fuel capacity

| Fuel tank capacity - wing tanks | 2x 40 litres |
|---------------------------------|--------------|
| - central connecting tank       | 6 litres     |
| Max. fuel quantity              |              |
| Usable fuel quantity            | 85 litres    |
| Unusable fuel quantity          | 1 litre      |

Fuel specification EN228 min RON 90 unleaded Mogas fuel (Standard Spec. for Automotive Spark-Ignition Engine) or AVGAS 100 LL.

Due to the higher lead content in AVGAS, the deposits in the combustion chamber and lead sediments in the lubrication system will cause an increase in the wear of the valve seats. Therefore, use AVGAS only if you encounter problems with vapour lock or if other fuel types are not available.

For additional information concerning fuel specification consult **Operator's Manual for all versions of Rotax 912** supplied with the engine and the most recent updates as issued by Rotax.

The fuel system includes two wing tanks of 40 litres each, a central tank of 6 litres, Fuel drain valve, fuel valves, a fuel filter, an engine fuel pump and connecting lines. Fuel tanks and fuel lines are suitable for fuel containing ethanol.

The fuel is gravity-fed from the right-hand or left-hand wing tank into the 6L central tank depending on which wing tank fuel valve is open. The fuel is then further directed from the central tank via the main fuel valve and fuel filter into the mechanical fuel pump on the engine which delivers the fuel to the carburettors. (additional electric fuel pump optional)

The amount of fuel in each tank is indicated by a wing root visual fuel gauge which is a part of each tank. Minimum fuel quantity in the central feeder tank is indicated by a warning light on the instrument panel. When remaining fuel is 4,1 litres, the light will illuminate and this means enough fuel for approximately 10 minutes of flight. The warning light condition can be verified at any time by pushing the control button. No red light indication when the control button is pushed and held means the bulb is blown out and the minimum fuel quantity is not indicated:- In this case, make a more conservative estimate for fuel on board, check fuel quantity in wing tanks and land as soon as you are not confident of the fuel quantity inside the wing tanks.

Do not forget to properly open and manage the main fuel tank valves to ensure continuous flow of fuel to the engine.

The fuel drain valve outlet is behind the left seat on the outside bottom side of the fuselage; to drain off water and dirt, the drain pipe is to be pressed into the fuselage and subsequently a fuel sample is to be taken.

For refuelling information see section 10.1

#### Four Wing Tank Option

An approved factory fitted option of two additional wing tanks (one each side) proving an extra 80 litres fuel capacity.

With this extra tank modification, a separate fuel line from each individual tank feeds and exits on the underside of the wing, close to the wing root. These feed a single 3 way valve (one per wing) inside the cabin, with the selections being – inboard tank, outboard tank or off. (see photo)

A single fuel line then exits this 3 way valve to the header tank and then to the most forward main fuel valve by the pilot (below panel). Excess fuel that is not used by the engine is returned via a fuel line to the header tank.

#### Guidance for 4 tank operation.

1. The aircraft additional outboard tanks should only be used if additional fuel to the standard inboard  $2 \times 40$  litre tanks is needed. The two inboard tanks are used as first choice for normal operations and only if more fuel is needed, then the outboard tanks should be used additionally. Outboard tanks should be kept empty if possible when not required.

2. If the outboard tanks contain fuel, these must be used first and exhausted if possible before switching to the inboard tanks.

3. Whichever wing tanks are used, the main fuel valve under the panel will always be in the fully on position during flight.

4. When the aircraft is flown with fuel in all 4 tanks the pilot will use the a single outboard wing tanks first with inboards shut off. There is no direct fuel gauge for the outboard tanks, the header "4 litres remaining" warning light, located on the panel, can be used to gauge each of the outboard tanks separately. Suggested fuel tank selection sequence to be used is:

- a) Port outboard until empty (using warning light or a flight time)
- b) Starboard outboard until empty
- c) Both inboards, or if pilot wants to select only one, Port inboard

The two inboard tanks are then monitored using the sight gauges in the wing roots as normal.



Red warning light and bulb test button. Wing tank selector (one per side)

5. Do not fold the wings with more than approx 20 litres in the inboard tanks. Ideally the outboard tanks should be empty when wings are folded, or as a maximum 20 litres for a short duration (overnight for example).

# 2.5 Oil

| Oil tank capacity    | 3.2 litres |
|----------------------|------------|
| Maximum oil quantity | 2.6 litres |
| Minimum oil quantity | 2.1 litres |

#### Oil specification:

When selecting the most suitable lubricants refer to the latest recommendations issued by Rotax.

- Use only oil as recommended by Rotax
- Oils primarily for Diesel engines are insufficient due to high temperature properties and additives which favor clutch slipping, are generally therefore are unsuitable.

CAUTION: If the engine is mainly run on AVGAS **more frequent** oil changes will be required. See the latest Rotax Service Information.

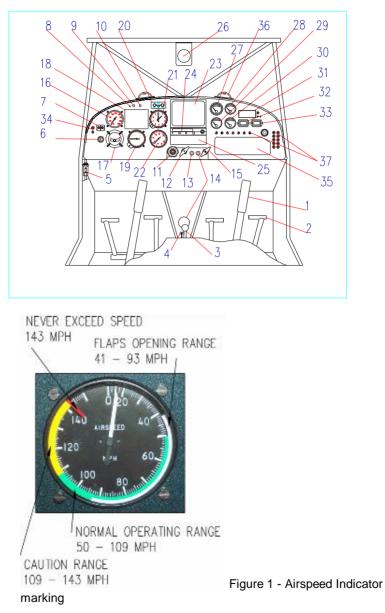
For additional information concerning oil system consult **Operator's Manual for all versions of Rotax 912** supplied with the engine, with supplements as issued periodically by Rotax.

The maximum and minimum oil level is indicated by two marks on the dip stick in the oil tank.

# 2.6 Operating weights and loading (occupants, baggage, fuel, ballast)

| Typical empty weight (standard version)    | .289 kg |
|--------------------------------------------|---------|
| Max. take-off weight                       | .560 kg |
| Max. landing weight                        | .560 kg |
| Max. fuel weight                           | 61 kg   |
| Max. baggage weight in baggage compartment | 20 kg   |

| Maximum number of persons on board | 2     |
|------------------------------------|-------|
| Minimum crew weight                | 55 kg |
| Maximum loading per seat12         | 20 kg |


#### WARNING

# Make sure that above mentioned weight limits are strictly followed.

# Structural failures which result from overloading of the aircraft may be dramatic and catastrophic.

The additional stress placed on the structural parts by overloading can accelerate the occurrence of metal fatigue failures. Also flight characteristics might change significantly when the aircraft is overloaded. Takeoff and landing distance are significantly longer for overloaded aircraft. Overloading and out of balance loading of the aircraft is one of the most common causes of accidents.

# 2.7 Cabin overview (guide only)



#### TYPICAL LAYOUT OF THE PANEL CONTROLS AND INSTRUMENTS

(see following pages for details, however the Kit builder has freedom to organise the panel to his or her wishes – this is only a guide as each aircraft will be different)

| 1. Control stick              | 15. Choke                  | 30. Fuel pressure gauge       |
|-------------------------------|----------------------------|-------------------------------|
| 2. Rudder pedals              | 16. ASI                    | 31. Outside temperature.      |
| 3. Wing flaps                 | 17. Slip Ball indicator    | 32. Flight hours gauge        |
| 4. Trim elevator              | 18. EFIS – D6 or D10       | 33. Engine hour gauge         |
| 5. Fuel cock                  | 19. VSI                    | 34. Switch for Electric fuel  |
|                               |                            | pump.                         |
| 6. Master Switch              | 20. INTERCOM               | 35. Compartment for maps      |
| 7. Ignition                   | 21. Altimeter              | 36. Ventilation               |
| 8. Min. fuel pushbutton       | 22. RPM indicator          | 37. Switch + circuit breakers |
| 9. Last 4 liter warning light | 23. GPS                    | 37.1 Landing light            |
| 10. Charging light            | 24. Radio                  | 37.2 Strobe light             |
| 11. Throttle control lever    | 25. Transponder            | 37.3 Gyro or EFIS             |
| 12. Brake with park brake     | 26. Magnetic Compass       | 37.4 Free                     |
| 13. Carb heat.                | 27. Oil temperature        | 37.5 Radio                    |
| 14. Heater                    | 28. Oil pressure gauge     | 37.6 Transponder              |
|                               | 29. Head temperature gauge | 37.7 GPS                      |

#### II. List of installed instruments and other equipment:

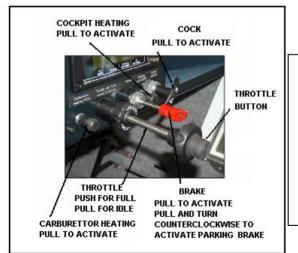
|                                 | Туре            | Serial No. |
|---------------------------------|-----------------|------------|
| Airspeed indicator              | BK -32          |            |
| Altimeter                       | BG – 3H         |            |
| Vertical speed indicator        | BC - 2A         |            |
| Bank indicator                  | BZW-4B          |            |
| Magnetic compass                | CM-13 S         |            |
| Fuel pressure                   | BDT1/31/B       |            |
| RPM + engine hours              | VDO             |            |
| Oil pressure gauge              | VDO 999 161 011 |            |
| Oil temperature gauge           | VDO 999 161 019 |            |
| Cylinder Head temperature gauge | VDO 999 161 019 |            |
| Flight-hour meter               |                 |            |
| Engine-hour meter               |                 |            |
| GPS                             |                 |            |
| Intrecom                        |                 |            |
| Radio                           |                 |            |
| Transponder                     |                 |            |
|                                 |                 |            |
|                                 |                 |            |

Digital Airspeed Bank Turn Rate Magnetic Digital Altitude Tape Airspeed Angle Indicator Heading Altitude Tape 010 020 30 090 060 02220 024 110 023 100 022 021 090 020 080 29.92 12:06:2 1 L 0 Angle of Clock/ Slip/Skid Artificial Barometric Attack Timer Horizon Ball Pressure Tape Info Area, 2 places, either: \* G-Meter \* Voltmeter \* VSI \* OAT, Density Altitude, True Airspeed

Screen example of an Electronic Flight information System

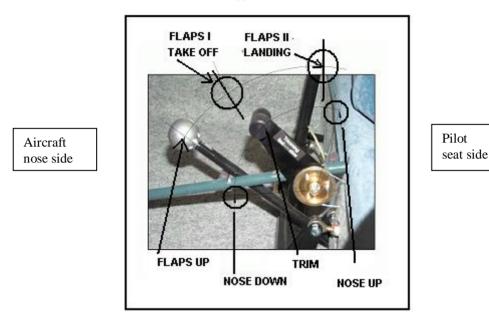


Main Fuel Valve open and close position




MAIN FUEL VALVE CLOSED




MAIN FUEL VALVE OPEN

Ignition and master switch



Note if a vernier style throttle body is fitted: Rotate throttle knob for fine power settings (clockwise to increase power, counterclockwise to reduce power), for larger changes push/pull throttle when the central button is pressed and held

#### Central panel



Intuative flap and trim levers located between P1 and P2 seat position



Example of switch and fuse layout



Warning lights and fuel reserve bulb check button



Door locking mechanism

The battery (Dryfit A500, 12 V, 16 Ah ) is located behind the right-hand pilot's seat. Nominal voltage in aircraft system is 13.5 to 14.2 V. The engine is equipped with integrated AC generator with external rectifier-regulator (12 V, 20A DC). A lithium battery option is also available.

| МРН |     |  |
|-----|-----|--|
| IAS | CAS |  |
| 40  | 43  |  |
| 45  | 48  |  |
| 50  | 52  |  |
| 60  | 61  |  |
| 70  | 70  |  |
| 80  | 78  |  |
| 90  | 87  |  |
| 100 | 96  |  |
| 110 | 105 |  |
| 120 | 115 |  |

# 3. Operating limitations

Airspeed indicator system calibration:

All flight speeds are presented as indicated airspeeds in miles per hour (MPH). As the calibrated airspeed cannot usually be determined by simple reading of the aircraft airspeed indicator, corresponding calibrated airspeed in miles per hours (MPH) are also presented in this document. All airspeed values in this handbook assume no instrument error. The pitot dynamic tube head is located on the port underside wing. The static tube reference is in the cabin.

# 3.1 Stall speed at maximum takeoff weight ( $V_s$ and $V_{so}$ )

| Aircraft                      | Stall speed Mph – angle of bank 0° |     |
|-------------------------------|------------------------------------|-----|
| configuration                 | IAS                                | CAS |
| Flaps down (V <sub>so</sub> ) | 41                                 | 45  |
| Flaps up (V <sub>s</sub> )    | 49                                 | 51  |

WARNING

The stall speed mentioned above are with wings level. Once any angle of bank (e.g. turn) is encountered the stall speed is significantly increased.

Example: angle of bank – 60° ...... Vs= 73 MPH

The more bank – the higher stall speed. This simple rule is especially important when a turn at maximum permitted angle of bank (60°) is performed. Do not start the turn until you have sufficient airspeed reserve – recommended entry speed is 92 MPH. Full throttle is also essential to have sufficient thrust reserve as the drag is increased during a steep turn.

# 3.2 Flaps extended speed range ( $V_{SO}$ to $V_{FE}$ ) Mph

|             | IAS | CAS |
|-------------|-----|-----|
| Lower limit | 41  | 45  |
| Upper limit | 93  | 90  |

# 3.3 Maximum maneuvering speed (V<sub>A</sub>) Mph

|                                          | IAS | CAS |
|------------------------------------------|-----|-----|
| Max. manoeuvring speed (V <sub>A</sub> ) | 109 | 104 |

### 3.4 Never exceed speed (V<sub>NE</sub>) Mph

|                               | IAS | CAS |
|-------------------------------|-----|-----|
| Never exceed speed $(V_{NE})$ | 143 | 134 |

# 3.5 Crosswind limitation

Maximum permitted wind speed components for take-off and landing:

Crosswind...... 15 mph (12 knots)

The EuroFOX has demonstrated to be able to cope well with crosswinds exceeding this, especially with more experience pilots.

Cross wind take offs and landings require training and experience, the higher the crosswind component, the better your skill must be. Do not fly without proper experience when the wind speed is approaching the limit.

Avoid take offs with tail wind when possible – the total take off distance is significantly longer and longer ground distance is required to gain altitude.

When landing with tail wind the aircraft ground speed is higher resulting in a longer landing distance.

# 3.6 Service ceiling

Ceiling.....14 760 ft

WARNING

Oxygen mask and/or other equipment required to reach maximum ceiling, consult respective regulations.

### 3.7 Load factors

Flaps up:

| Maximum positive centre of gravity load factor + 4 Gs |
|-------------------------------------------------------|
| Maximum negative centre of gravity load factor 2 Gs   |
| Flaps down:                                           |
| Maximum positive centre of gravity load factor        |

Maximum negative centre of gravity load factor ...... 0 Gs

# 3.8 Prohibited manoeuvers

| WARNING Aerobatics and intentional spins are prohibited |                                                |
|---------------------------------------------------------|------------------------------------------------|
|                                                         | Maximum angle of roll, port and Starboard: 60° |
|                                                         | Maximum angle of pitch up and down: 45°        |

# 3.9 Other Limitations

| WARNING | No smoking   |
|---------|--------------|
| WARNING | ite shioking |

| WARNING | Flights with rear "turtle deck" canopy removed are<br>prohibited |
|---------|------------------------------------------------------------------|
|---------|------------------------------------------------------------------|

| WARNING | Only VFR day flights at ambient temperature above -10° C are permitted.                                                                                              |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Flights at ambient temperature between -10° C and 0° C<br>are permitted only under no icing conditions and when the<br>carburettor heating is activated (if fitted). |

| WARNING | IFR flights and flying in cloud is prohibited.  |
|---------|-------------------------------------------------|
|         | Flight into know icing conditions is prohibited |

This aircraft is not certified for operation in IMC (Instrument meteorological conditions). Always stay clear of clouds and have visual contact with the ground. Follow the airspace classification regarding distance from clouds. Always evaluate the weather during your flight and try to get weather information from your destination using the radio whenever possible. When weather is deteriorating make a diversion or turn back before low cloud base and/or low visibility are outside local licence requirements.

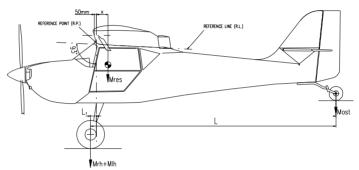
# 4. Weight and Balance Information

### 4.1 Equipment list possible

|       |                             | VFR Day |
|-------|-----------------------------|---------|
|       | Airspeed indicator          | Х       |
|       | Turn Bank indicator         | Х       |
|       | Attitude indicator          | Х       |
|       | Altimeter                   | Х       |
|       | Magnetic compass            | Х       |
|       | Vertical speed<br>indicator | Х       |
| Oil F | Pressure indicator          | Х       |
| Oil t | emperature indicator        | Х       |
| Fue   | pressure indicator          | Х       |
| Cylii | nder head temperature       | Х       |
| Rad   | io                          | Х       |
| Inter | com                         | Х       |
| Trar  | isponder                    | Х       |
| ELT   |                             | Х       |
| 12V   | socket                      | Х       |
| Add   | tional as builders spec     | Х       |
|       |                             |         |

# 4.2 Center of gravity (CG) range and determination

Aircraft handling and performance have been determined for this range of CG positions.


|                          | Front limit (mm) | Rear limit (mm) |
|--------------------------|------------------|-----------------|
| Centre of gravity limits | 259              | 442             |

4.2.1 Aircraft weight and balance statement

The CG position of the empty aircraft is determined by weighing. The procedure is described in the Maintenance manual and in LAA publications. The whole procedure must be repeated and new **Aircraft** weight and balance statement be prepared whenever a modification or repair having an impact on the weight of the aircraft occurs.



#### Aircraft Leveling: Bottom of door entrance level at zero degrees



#### Values Weighed:

| Main wheels      | right-hand<br>left-hand     | MRH =<br>MLH = | kg<br>kg | L=<br>L1= | mm<br>mm |
|------------------|-----------------------------|----------------|----------|-----------|----------|
| Tail wheel       |                             | MTS =          | kg       |           |          |
| Resulting weight |                             | Mres =         | kg       |           |          |
| C.G. position    | $B = (M_{or} \times L) / M$ | ws =           | mm       |           |          |

$$\mathbf{S} = (\mathbf{W}_{\text{pr}} \times \mathbf{L}) / \mathbf{W}_{\text{vys}} = \mathbf{U}_{\text{vys}}$$

#### Performed by:

Data

# The datum point (50 mm forward of the wing leading edge at the root) to wheel centre line distances on all EuroFOX aircraft are as follows: (these

figures take into account the wing forward sweep of 50 mm and simply go into the appropriate form.)

There is no need to measure these positions as all positions are set by factory jigging before kit delivery.

Nose wheel:

- From datum point to nose wheel centre line = -919 mm
- From datum point to main wheel centre line = 503 mm

Tail wheel

- From datum point to main wheel centre line = -21 mm
- From datum point to tail wheel centre line = 4289 mm

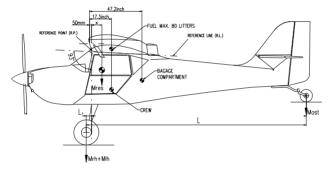
#### 4.2.2 Weight and balance determination for flight

#### WARNING

# The aircraft must not be operated outside of its approved weight and balance limitations to assure safe flying.

Maximum take off weight is the maximum weight approved for the start of the take off roll.

We have prepared 2 tables for guidance below, one at 289 kgs max empty weight, and the other at 300 kgs max empty weight as each aircraft build will be different.


These tables represent the maximum amount of fuel for given crew weight and given weight in the baggage compartment. The CG (centre of gravity) position is within the approved range for all combinations in these tables and any interpolation between displayed values.

| Maximum amount of fuel (Litres) for given<br>crew and baggage weight (based on empty wt 289 kgs) |                                  |    |    |    |    |     |    |    |    |
|--------------------------------------------------------------------------------------------------|----------------------------------|----|----|----|----|-----|----|----|----|
| Crew Wei                                                                                         | ght                              |    |    |    |    |     |    |    |    |
| Kgs                                                                                              | Kgs 55 82 95 123 136 163 189 210 |    |    |    |    | 210 |    |    |    |
| Baggage                                                                                          | 0.0                              | 86 | 86 | 86 | 86 | 86  | 86 | 86 | 85 |
| weight                                                                                           | 7.0                              | 86 | 86 | 86 | 86 | 86  | 86 | 86 | 75 |
| in                                                                                               | 14.0                             | 86 | 86 | 86 | 86 | 86  | 86 | 86 | 65 |
| Compartment                                                                                      | 20.0                             | 86 | 86 | 86 | 86 | 86  | 86 | 86 | 57 |

| Maximum amount of fuel (Litres) for given<br>crew and baggage weight (based on empty wt 300 kgs) |      |    |    |     |    |    |    |    |    |
|--------------------------------------------------------------------------------------------------|------|----|----|-----|----|----|----|----|----|
| Crew Weight                                                                                      |      |    |    |     |    |    |    |    |    |
| Kgs 55 82 95 123 136 163 189 21                                                                  |      |    |    | 210 |    |    |    |    |    |
| Baggage                                                                                          | 0.0  | 86 | 86 | 86  | 86 | 86 | 86 | 86 | 69 |
| weight                                                                                           | 7.0  | 86 | 86 | 86  | 86 | 86 | 86 | 86 | 60 |
| in                                                                                               | 14.0 | 86 | 86 | 86  | 86 | 86 | 86 | 79 | 50 |
| Compartment                                                                                      | 20.0 | 86 | 86 | 86  | 86 | 86 | 86 | 70 | 42 |

All these loadings will keep the aircraft within MAUW and within the C of G range. It is imperative that the pilot knows exactly the real empty weight of his or her aircraft.

### 4.2.3 Detailed calculation of CG position



As all reference points are located behind the leading edge of the wing at the root, the leading edge was selected as the reference plane. The table below shows a typical calculation including an example.

| EuroFOX LAA 560kg tail wheel- Pilot Operating Handbook + Flight Training |
|--------------------------------------------------------------------------|
| Supplement                                                               |

| Actual         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Weight (kgs)   | Arm (mm's)                                                      | Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 200            | 777                                                             | 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 209            | 277                                                             | 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 189            | 440                                                             | 832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 62             | 440                                                             | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 20             | 1200                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 560            |                                                                 | 2145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <u>Total m</u> | <u>iomen</u> t                                                  | X 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Total v        | veight                                                          | X 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 259 mm         | То                                                              | 442 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 235 1111       | 10                                                              | 442 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                | 383                                                             | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                | Weight (kgs)<br>289<br>189<br>62<br>20<br>560<br><u>Total m</u> | Weight (kgs)       Arm (mm's)         289       277         189       440         62       440         20       1200         560       Image: Comparison of the second secon |  |

# 5. Performance

The data is based on particular flight measurements undertaken with the aircraft of this type in good service conditions and with application of average piloting skills. The performance stated below are calculated at sea level of the international standard atmosphere (ISA). Variations in pilot technique can cause significant differences as well as the other conditions like runway slope, runway surface condition, humidity etc.

Use the following data for guidance but do not plan a take-off or landing when only 50 ft extra runway length is available or do not plan a cross country with only 8 litres of fuel expected to remain when arriving at your destination. Always be conservative when planning a flight and be ready for the unexpected – unexpected wind, atmospheric turbulence or sudden weather change at the destination forcing you to divert to airfield 60 NM away. Always plan a reasonable fuel reserve – 60 minutes seems to be sufficient time for most of flights, but this time should be increased when complicated weather conditions (strong headwind or rain showers) are expected en route.

The propeller installed on your aircraft was set to achieve the best compromise between take off and cruising performance (the performance information below are based on this setting). You can change the setting (see propeller documentation) to achieve a better rate of climb or a better cruising speed. Always be carefully when making this change and make a record of the current settings. When the propeller is set to achieve a maximum cruise speed, the take-off distance is significantly longer. On the other hand, when the propeller is set to achieve good rate of climb, the fuel consumption during level flight is higher. When a finer pitch is set (e.g. climb setting), a higher static RPM is achieved when aircraft is static and full power is applied. Be careful not to exceed the Rotax maximum limit RPM.

# 5.1 Takeoff and landing distances (based on 912ULS)

| Surface      | Take off Distance (Metres) |                            |  |  |
|--------------|----------------------------|----------------------------|--|--|
|              | Ground run                 | Take off distance to 50 ft |  |  |
| Grass runway | 149                        | 319                        |  |  |
| Hard runway  | 139                        | 309                        |  |  |

| Surface      | Landing Distance (Metres)      |            |  |  |
|--------------|--------------------------------|------------|--|--|
| Sunace       | Landing distance<br>from 50 ft | Ground run |  |  |
| Grass runway | 349                            | 170        |  |  |
| Hard runway  | 329                            | 149        |  |  |

Both take-off and landing distance are significantly increased by the following factors:

- Tail wind
- High airport altitude
- High air temperature
- Up-hill runway slope
- Runway wet or covered with snow, dust or water
- Propeller set to achieve better cruising performance

# 5.2 Rate of climb

|                     | MTOW 560 kg |
|---------------------|-------------|
| Rate of climb (fpm) | 816         |

# 5.3 Cruise speeds Mph

Maximum cruising speed at 75% ......109 IAS (104 CAS)

# 5.4 RPM

| Max. take off power                  | 5,800 (5 mins)             |
|--------------------------------------|----------------------------|
| Max. continuous power                | 5,500                      |
| Cruise flight                        |                            |
| Idle speedapprox. 1,600 - 2000 rpm 9 | 12iS or 912ULS EP modified |

# 5.5 Fuel consumption

| Engine settings             | Fuel consumption<br>(Litres per hour) |
|-----------------------------|---------------------------------------|
| Take off power performance  | 26                                    |
| Max. continuous performance | 24                                    |
| Cruise performance          | 12-19                                 |

Fuel consumption during cruise flight is dependent on various factors. The most important ones are engine settings and propeller settings. The higher the engine RPM is set during cruise, the higher the fuel consumption. When propeller is set to minimum angle to achieve good climbing performance, level flight will be slower together with higher fuel consumption. When planning a flight, always consider all these and other factors like wind direction and speed or expected weather en route. Always plan for sufficient fuel reserve when arriving at the destination. Always carefully evaluate fuel consumption during the flight.

# 5.6 Other performance data

| Max. endurance                    | 6 hours             |
|-----------------------------------|---------------------|
| Max. range                        | . 620 Statute miles |
| Max. speed flying with doors open | 75 MPH              |

# 6. Performance 912iS

The data is based on particular flight measurements undertaken with the aircraft of this type in good service conditions and with application of average piloting skills. The performance stated below are calculated at sea level of the international standard atmosphere (ISA). Variations in pilot technique can cause significant differences as well as the other conditions like runway slope, runway surface condition, humidity etc.

Use the following data for guidance but do not plan a take off or landing when only 50 ft extra runway length is available or do not plan a cross country with only 8 litres of fuel expected to remain when arriving at your destination. Always be conservative when planning a flight and be ready for the unexpected – unexpected wind, atmospheric turbulence or sudden weather change at the destination forcing you to divert to airfield 60 NM away. Always plan a reasonable fuel reserve – 60 minutes seems to be sufficient time for most of flights, but this time should be increased when complicated weather conditions (strong headwind or rain showers) are expected en route.

The propeller installed on your aircraft was set to achieve the best compromise between take off and cruising performance (the performance information below are based on this setting). You can change the setting (see propeller documentation) to achieve a better rate of climb or a better cruising speed. Always be carefully when making this change and make a record of the current settings. When the propeller is set to achieve a maximum cruise speed, the take off distance is significantly longer. On the other hand, when the propeller is set to achieve good rate of climb, the fuel consumption during level flight is higher. When a finer pitch is set (e.g. climb setting), a higher static RPM is achieved when aircraft is static and full power is applied. Be careful not to exceed the Rotax maximum limit RPM.

# 6.1 Startup procedure 912iS

#### Start up

- 1. Throttle closed and friction lock on
- 2. Brakes ON
- 3. Fuel on all 3 taps
- 4. Turn EMU on and wait for display to boot up
- 5. Turn key to "Avionic" tab
- 6. Turn lane "A" (primary computer) on, then turn lane "B" (secondary computer) on
- 7. Turn fuel pump "A" (main fuel pump) on the fuel pump "B" (auxiliary fuel pump) on
- 8. Hold on in the "up" position the momentary start switch fuel pumps will start running
- 9. Wait EMU display to show green for lane "A" and lane "B"
- 10. Wait for the red lights above lane "A" and lane "B" to extinguish
- 11. Set throttle to % position as indicated for best start position up by EMU, lock throttle tight
- 12. Whilst continuing to hold the momentary start switch "UP" and on, turn ignition key to "ON"
- 13. When engine starts release momentary switch and allow key to return to "Avionics" and move hand to throttle control
- 14. Engine should be running, check all engine information on EMU

# Shut down (normally wait 5 mins after landing) Note – never turn the fuel pumps off first

- 1. Turn off any comms, GPS, lights, strobes using their individual switches and move key switch to "Engine"
- 2. Set engine to idle
- 3. Turn off lane "A" and lane "B"
- 4. Turn off fuel "A" and fuel "B"
- 5. Switch ignition key to off
- 6. Turn EMU off
- 7. Close all 3 fuel taps
- 8. Brakes on

The Rotax 912iS engine manual chapter 2 should be used in place of EuroFOX POH sections 3 and 7 for normal and abnormal operations

### 6.2 Takeoff and landing distances

| Surface      | Take off Distance (Metres) |                            |
|--------------|----------------------------|----------------------------|
|              | Ground run                 | Take off distance to 50 ft |
| Grass runway | 149                        | 319                        |
| Hard runway  | 139                        | 309                        |

| Surface      | Landing Distance (Metres)      |            |
|--------------|--------------------------------|------------|
| Sunace       | Landing distance<br>from 50 ft | Ground run |
| Grass runway | 349                            | 170        |
| Hard runway  | 329                            | 149        |

Both take off and landing distance are significantly increased by the following factors:

- Tail wind
- High airport altitude
- High air temperature
- Up-hill runway slope
- Runway wet or covered with snow, dust or water
- Propeller set to achieve better cruising performance

### 6.3 Rate of climb

|                     | MTOW 560 kg |
|---------------------|-------------|
| Rate of climb (fpm) | 816         |
|                     |             |

### 6.4 Cruise speeds Mph

Maximum cruising speed at 75% ......110 IAS (105 CAS)

| RPM                   |                |
|-----------------------|----------------|
| Max. take off power   | 5,800 (5 mins) |
| Max. continuous power | 5,500          |
| Cruise flight         |                |
| Idle speed            | approx. 1,600  |

### 6.5 Fuel consumption

----

| Engine settings             | Fuel consumption<br>(Litres per hour) |
|-----------------------------|---------------------------------------|
| Take off power performance  | 26                                    |
| Max. continuous performance | 24.5                                  |
| Cruise performance          | 12-19                                 |

Fuel consumption during cruise flight is dependent on various factors. The most important ones are engine settings and propeller settings. The higher the engine RPM is set during cruise, the higher the fuel consumption. When propeller is set to minimum angle to achieve good climbing performance, level flight will be slower together with higher fuel consumption. When planning a flight, always consider all these and other factors like wind direction and speed or expected weather en route. Always plan for sufficient fuel reserve when arriving at the destination. Always carefully evaluate fuel consumption during the flight.

### 6.6 Other performance data

| Max. endurance                    | 6 hours           |
|-----------------------------------|-------------------|
| Max. range                        | 620 Statute miles |
| Max. speed flying with doors open | 75 MPH            |
| Best Glide speed                  | 65 MPH            |

### 7. Performance 912ULS EP Modified 120hp

The data is based on particular flight measurements undertaken with the aircraft of this type in good service conditions and with application of average piloting skills. The performance stated below are calculated at sea level of the international standard atmosphere (ISA). Variations in pilot technique can cause significant differences as well as the other conditions like runway slope, runway surface condition, humidity etc.

Normal EuroFOX operating procedures apply as detailed in this POH, however the additional power available significantly increases the take off and climb performance. Although when primarily used as a aerotowing aircraft, when used without something on tow, care should be taken.

The propeller installed on your aircraft should be set to achieve the best compromise between take off and cruising performance or for best aerotowing performance as appropriate. You can change the setting (see propeller documentation) to achieve a better rate of climb or a better cruising speed. Always be carefully when making this change and make a record of the current settings. When the propeller is set to achieve a maximum cruise speed, the take off distance will be longer. On the other hand, when the propeller is set to achieve good rate of climb, the fuel consumption during level flight is higher. When a finer pitch is set (e.g. climb setting), a higher static RPM is achieved when aircraft is static and full power is applied. Be careful not to exceed the Rotax maximum limit RPM.

The figures below are based on an aircraft set up to aerotow – WOT = 5500 rpm in the climb at 70 kts indicated. This is with a DUC Windspoon propeller fitted, but operated without anything on tow.

### 7.1 Startup procedure 912ULS EP Modified 120hp

# Start

- 1. Fuel on all 3 taps
- 2. Brakes on
- 3. Throttle closed or just off the stop
- 4. Oil flap pull out and closed
- 5. Check throttle friction lock engaged
- 6. Turn key to second "engine on" position
- 7. Ignition switch ON
- 8. Both mags A and B on
- 9. Fuel pump A on\*\*\*
- 10. Press start button, keep right hand on throttle
- 11. Pick up with throttle and close choke, tick over 1800-2000 rpm
- 12. Strobes and avionics on

\*\*\* Only one fuel pump should be used at any one time. Both pumps will not increase fuel pressure and the available power from the alternator will be on the limit. A good operating practice is to fly to your destination on pump A and fly back on pump B, thus giving both pumps regular use and ensuring good lifetime. Both pumps are identical.

# Pre take off

- 1. Throttle 2000 rpm, hold on brakes if required
- 2. Flying Controls Full and free
- 3. Doors and Harness Closed, locked, secure
- 4. Stowage items Secure
- 5. Radio TX On correct 1st and 2nd frequency
- 6. Trim Set take off
- 7. T & P's All in range
- 8. RPM Mag check Up to 3800 rpm check, hold with brakes
- 9. Check each fuel pump separately on/off

- 10. Fuel sufficient and on all 3 taps
- 11. Flaps Set take off typically 1/2

# **Before landing**

- 1. Brakes off
- 2. Back up fuel pump on and sufficient
- 3. Flaps and trimmer Set landing as POH
- 4. Landing light On
- 5. Instruments T & P's all ok
- 6. Doors and harnesses Closed, locked, secure

# Shutdown

- 1. Hold on brakes
- 2. Allow engine to cool down approx. 30 secs, open oil flap
- 3. Strobes and avionics off
- 4. Throttle out and friction locked
- 5. Both mags off
- 6. Ignition switch off
- 7. Fuel pumps off
- 8. Key to off
- 9. Fuel taps closed

### 7.2 Takeoff and landing distances @ MAUW, calm conditions

| Surface      | Take off Distance (Metres) |                            |
|--------------|----------------------------|----------------------------|
|              | Ground run                 | Take off distance to 50 ft |
| Grass runway | Less than 100              | 250                        |
| Hard runway  | Less than 80               | 200                        |

| Surface      | Landing Distance (Metres)      |            |
|--------------|--------------------------------|------------|
| Surface      | Landing distance<br>from 50 ft | Ground run |
| Grass runway | 349                            | 170        |
| Hard runway  | 329                            | 149        |

Both take-off and landing distance are significantly increased by the following factors:

- Tail wind
- High airport altitude
- High air temperature
- Up-hill runway slope
- Runway wet or covered with snow, dust or water
- Propeller set to achieve better cruising performance

### 7.3 Rate of climb

|                     | MTOW 560 kg |
|---------------------|-------------|
| Rate of climb (fpm) | 1500        |
|                     |             |

### 7.4 Cruise speeds Mph

Maximum cruising speed at 75% ......110 IAS (105 CAS) RPM

| Max. take off power   | 5,800 (5 mins)    |
|-----------------------|-------------------|
| Max. continuous power | 5,500             |
| Cruise flight         | 4,200 – 5,200     |
| Idle speed            | approx. 1800-2000 |

### 7.5 Fuel consumption

| Engine settings             | Fuel consumption<br>(Litres per hour) |
|-----------------------------|---------------------------------------|
| Take off power performance  | 26                                    |
| Max. continuous performance | 24.5                                  |
| Cruise performance          | 12-19                                 |

Fuel consumption during cruise flight is dependent on various factors. The most important ones are engine settings and propeller settings. The higher the engine RPM is set during cruise, the higher the fuel consumption. When propeller is set to minimum angle to achieve good climbing performance, level flight will be slower together with higher fuel consumption. When planning a flight, always consider all these and other factors like wind direction and speed or expected weather en route. Always plan for sufficient fuel consumption during the flight.

### 7.6 Other performance data

| Max. endurance                    | 6 hours           |
|-----------------------------------|-------------------|
| Max. range                        | 620 Statute miles |
| Max. speed flying with doors open | 75 MPH            |
| Best Glide speed                  | 65 MPH            |

### 8. Emergency procedures

### 8.1 Introduction

This section contains procedures for various emergencies which may occur. Emergencies caused by aircraft or engine malfunctions are rare if proper pre-flight inspections and maintenance are practised.

The chapter describes basic emergencies and recovery procedures. Not all emergencies that may occur can be listed here in full, therefore their solution depends on the experience of the crew controlling course of such events. All air speed values in this chapter are presented in MPH Indicated Airspeed, as this value represents instrument reading better than the Calibrated air speed. In respect to any engine failure, first priority is always FLY THE AIRCRAFT.

### 8.2 Engine Failure and Emergency landings

#### 8.2.1 Engine Failure during Take-Off Run

| - throttle      | REDUCE TO IDLE |
|-----------------|----------------|
| - ignition      | OFF            |
| - master switch | OFF            |
| - brakes        | AS REQUIRED    |

#### 8.2.2 Engine Failure during Take-Off

| - airspeed | 75 mph IAS |
|------------|------------|
| -          | -          |

- choice of landing site - after take-off and up to 150 ft - land in straight direction ahead, if possible

- over 150 ft choose suitable landing site

The landing site is to be preferably chosen in the runway direction or the nearest suitable site clear of obstacles

- master switch OFF
- ignition OFF
- main fuel valve SHUT
- tank fuel valves SHUT

| - flaps        | EXTEND AS NEEDED |
|----------------|------------------|
| <b>*</b> • • • | TIQUITEN         |

- safety belts TIGHTEN

after touchdown:

| - brakes | AS REQUIRED |
|----------|-------------|
|----------|-------------|

### 8.2.3 In-flight Engine Failure

| - airspeed | 75 Mph IAS |
|------------|------------|
|            |            |

- landing site selection SELECT
- transmit MAYDAY on 121,5, ELT ON, XPDR 7700 if time permits

| check | - master switch         | ON                          |
|-------|-------------------------|-----------------------------|
|       | - ignition              | ON                          |
|       | - main fuel valve       | OPEN                        |
|       | - wing tank fuel valves | OPEN to tank with more fuel |
|       | - throttle              | SET TO 1/3 OF TRAVEL        |
|       | - starter               | START THE ENGINE            |

If the engine cannot be restarted, proceed in accordance with the procedure 8.2.2 .

8.2.4 Additional information on engine failure and emergency landing procedures

If the engine failure occurs during the take off run, the pilots main concern should be to stop the aircraft on the remaining runway. Those extra items in the checklist are to add protection should the runway be too short to stop.

In flight, prompt reduction of pitch attitude to obtain and maintain a proper glide speed upon experiencing an engine failure is the first priority. If the failure has occurred shortly after take off, a landing should be planned straight ahead with only small changes in the flight direction to avoid obstacles. The best gliding ratio can be achieved with flaps up – flaps down will reduce the stall speed but at the same time deteriorating gliding performance. Try to stop rotation of propeller if restarting efforts are not

successful - wind milling propeller has a higher drag than stopped propeller.

While gliding towards a selected forced landing site, an effort should be made to determine and correct the cause of engine failure – time and altitude permitting. Do not concentrate on cause determination or restart effort unless you have selected a suitable landing site and you are confident of this manoeuvre. Flying the aircraft (especially maintaining the proper gliding speed) is always the first priority. If the cause cannot be determined and corrected the emergency landing must be accomplished.

Always announce your intent and position after engine failure using radio and other equipment when time permits. Turn radio to international emergency frequency – 121.5 and transmit MAYDAY message. Activate Emergency locator transmitter (ELBA) – set the switch to ON position. Set transponder (XPDR) to emergency code 7700. When the above mentioned procedure can not be performed due to time constraints try to complete as many steps as possible. Transmitting MAYDAY message on the frequency already tuned on your radio should be the minimum procedure.

### WARNING

During a landing it is vital for the pilot to continue to fly the aircraft. Damages and/or injuries can be minimised if the pilot is fully concentrating on controlling the aircraft until it comes to complete stop

#### 8.2.5 Carburettor Icing

Carburettor icing mostly occurs when getting into an area of ice formation. The carburettor icing shows itself through a decrease in engine power and an increase in engine temperatures. To recover the engine power, the following procedure is recommended:

| <ul> <li>carburettors heating</li> </ul> | ACTIVATE                          |
|------------------------------------------|-----------------------------------|
| - airspeed                               | 75 Mph IAS                        |
| - throttle                               | 1/3 of power $\approx$ (3500 RPM) |

- if possible, leave the icing area

- gradually increase the engine power to cruise conditions after 1-2 minutes

- if you fail to recover the engine power, land at the nearest airfield (if feasible), or, depending on circumstance, off-airfield, following the procedure given under 8.2.2

### 8.3 In-flight Engine Starting

| - airspeed               | 75 Mph IAS                       |
|--------------------------|----------------------------------|
| - landing site selection | SELECT                           |
| - master switch          | ON                               |
| - main fuel valve        | OPEN                             |
| - wing tank fuel valves  | OPEN to tank with more fuel      |
| - choke                  | SWITCH ON (cold engine only)     |
| - throttle               | - ADJUST to 1/3 of travel        |
|                          | - IDLE (when choke is activated) |
| - ignition               | ON                               |
| - starter                | START UP                         |

 if the engine cannot be restarted, increase the airspeed to 85 – 95 Mph IAS so that air flow can rotate the propeller, thus enabling engine starting.

WARNING

Loss of height needed for in-flight engine starting is about 500 to 650 ft.

### 8.4 Fires

Follow these procedure when fire or smoke in the engine compartment or cockpit is detected. Fires are extremely rare in properly maintained aircraft.

#### 8.4.1 Engine fire on the ground

| - main fuel valve                                        | SHUT                                                                                      |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| - tank fuel valves                                       | SHUT                                                                                      |  |
| - throttle                                               | FULL                                                                                      |  |
| - ignition                                               | switch off when engine has stopped<br>as all remaining fuel in carburettors<br>was burned |  |
| - master switch                                          | OFF                                                                                       |  |
| - abandon the aircraft and extinguish fire (if possible) |                                                                                           |  |

- abandon the aircraft and extinguish fire (if possible)
- Fire damage INSPECT

| N | 27 | Ē |  |
|---|----|---|--|
|   |    |   |  |

Time needed to burn fuel remaining in carburettors after fuel valves are closed is around 30 sec.

WARNING

#### DO NOT CONDUCT ANOTHER FLIGHT BEFORE THE FIRE CAUSE HAS BEEN DETERMINED AND REPAIRED BY AUTHORISED PERSONNEL

### 8.4.2 Engine fire during takeoff

| - throttle         | IDLE                                                                                      |
|--------------------|-------------------------------------------------------------------------------------------|
| - main fuel valve  | SHUT                                                                                      |
| - tank fuel valves | SHUT                                                                                      |
| - airspeed         | 75 Mph IAS                                                                                |
| - brakes           | STOP                                                                                      |
| - throttle         | FULL                                                                                      |
| - ignition         | switch off when engine has stopped<br>as all remaining fuel in carburettors<br>has burned |

- abandon the aircraft and extinguish fire (if possible) once the aircraft is stopped

#### 8.4.3 Engine fire in flight

| - main fuel valve        | SHUT                                                                                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| - tank fuel valves       | SHUT                                                                                                                |
| - throttle               | FULL                                                                                                                |
| - airspeed               | INCREASE as required to find an airspeed which will provide an incombustible mixture. Do not exceed $V_{\text{NE}}$ |
| - landing site selection | guide the aircraft to the nearest<br>airfield, or choose a suitable landing<br>site for emergency landing           |

- ignition
- master switch
- airspeed
- wings flaps
- safety belts
- perform emergency landing
- abandon the aircraft and extinguish fire (if possible)

WARNING

#### DO NOT ATTEMPT TO RESTART THE ENGINE

was burned

75 Mph IAS

TIGHTEN

EXTEND AS NEEDED

OFF



#### DO NOT CONDUCT ANOTHER FLIGHT BEFORE THE FIRE CAUSE HAS BEEN DETERMINED AND REPAIRED BY AUTHORISED PERSONNEL

8.4.4 Cockpit or electrical fire

Electrical fires are usually signalled by the odour of burning insulation.

- cockpit door OPEN to ren
- OPEN to remove smoke from the cockpit

switch off when engine has stopped as all remaining fuel in carburettors

- avionics and other switches OFF

Land at the nearest suitable landing site. Consider shutting down the engine (and master switch) once the suitable landing site is reached. Extinguish fire as soon as possible.

### 8.5 Gliding

| gliding ratio         | 1 : 9      |
|-----------------------|------------|
| optimum gliding speed | 70 Mph IAS |
| rate of descent       | 551 fpm    |

Always consider flying though areas of descending air when calculating gliding range. Do not forget to have and maintain sufficient altitude to perform a landing procedure once suitable landing site has been reached.

### 8.6 Precautionary Landing

- choose suitable landing site, evaluate wind direction and speed, surface, surrounding obstacles and total safety of the manoeuvre under consideration

- perform approach and fly-over at a speed of 75 Mph IAS along the selected landing site at a height of 150 ft to estimate the area condition, obstacles and to determine exact landing direction
- Follow normal landings checklist and land

after touchdown

| - Ignition      | OFF         |
|-----------------|-------------|
| - master switch | OFF         |
| - fuel valves   | SHUT        |
| - brakes        | AS REQUIRED |

A precautionary landing is preferable to an emergency landing. When engine vibration or engine roughness is presented, do not wait until the engine stops, perform a precautionary landing as soon as possible.

A precautionary landing is also used when the fuel exhaustion is imminent. This should not happen when proper flight preparation is performed. Always perform a precautionary landing before all fuel is consumed, emergency landing following the loss of power is more complicated and more risky.

Also consider a precautionary landing when bad weather is encountered. Again, it should not happen when proper flight planning is made. When the cloud base is forcing you to fly in low altitude and/or visibility is limited, try to fly a 180 course to avoid bad weather area. If the conditions are not getting better or even are deteriorating, perform a precautionary landing before the conditions become even worse.

### 8.7 Blown-Out Tyre Landing

- carry out normal approach-to-land
- when flaring at landing, keep the damaged wheel above ground as long as possible using ailerons (or elevator for the nose wheel)

- maintain the direction at landing run, applying rudder

### 8.8 Damaged Landing Gear Landing

- carry out a normal approach-to-land
- if the nose wheel is damaged, perform a touch-down on main wheels and hold the aircraft nose wheel up as long as possible till the speed is lost.
- if the main landing gear is damaged, perform touch-down at the lowest speed possible and maintain direction at landing run, if possible

### 8.9 Vibrations or other engine problem

If any forced vibrations appear in the aircraft, it is necessary:

- to set engine speed to such power rating where the vibrations are the lowest
- to land on the nearest airfield, or to perform a precautionary landing offairfield
- if the vibrations are increasing, carry out an emergency landing offairfield, following procedures given under 8.2.2

If the oil pressure reduces during a flight, an engine failure is probable. Reduce the engine power and execute a nearest airfield or precautionary landing before the engine failure occurs.

### 8.10 Inadvertent icing encountered

| <ul> <li>carburettor heating</li> </ul> | ACTIVATE                              |
|-----------------------------------------|---------------------------------------|
| - throttle                              | INCREASE above normal cruise settings |
| - course<br>icing                       | REVERSE or ALTER as required to avoid |

#### WARNING

#### EVASIVE ACTION SHOULD BE INITIATED IMMEDIATELY WHEN ICING CONDITIONS ARE ENCOUNTERED

A prompt action must be taken immediately once icing conditions are encountered. A 180° turn and a climb is usually appropriate. If the airframe ice builds extremely rapidly, consider off-airport forced landing. Approach speed should be increased slightly depending upon icing severity.

### 8.11 Extreme turbulence encountered

| - Airspeed      | REDUCE to 75 KIAS |
|-----------------|-------------------|
| - safety belts  | SECURED           |
| - loose objects | SECURED           |

When an area of extreme turbulence is entered reduce airspeed to approximately 85 Mph IAS. Do not reduce the airspeed too low in order to prevent the aircraft from stalling due to turbulence. Do not increase the speed into the yellow arc so as to prevent structural damage to the aircraft.

### 8.12 Electrical system malfunctions

8.12.1 Charging indicating light is illuminated

When the red charging light is illuminated no immediate action is required. All avionics and other equipment are powered from the battery, so the power source is limited. Try to switch off instruments which are not necessary for flight and land at the nearest airfield

### 8.13 Inadvertent Stall and spin recovery

Stall or spin should not occur during normal aircraft operation and they are prohibited.

8.13.1 The following general procedure should be followed should a stall occur:

- lower the nose by pushing the control stick
- gradually increase power

8.13.2 The following general procedure should be followed should a spin occurs:

- throttle IDLE
- rudder opposite to rotation
- control stick fully pushed

Once the rotation is stopped, centre rudder and establish a level flight.

### 9. Normal procedures

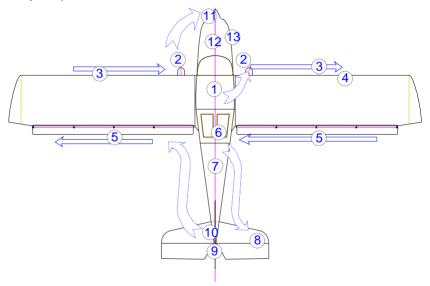
All air speed values in this chapter are presented in MPH Indicated Airspeed, as this value represents instrument reading better than the Calibrated air speed.

### 9.1 Pre-flight inspection

Pre-flight inspection must be conducted before the first flight of the day. The pre-flight inspection is recommended prior to any flight or series of flights by one pilot on any given day. Prior to any flight fuel and oil quantity should be checked as a minimum.

If the aircraft has been stored outside the engine area and other points of entry should be checked for evidence of bird occupancy. All control surfaces and travel stops should be examined for wing damages. Wheel fairings are not recommended for muddy field operation due to possible mud accumulation inside the fairings. When operating from gravel fields pay special attention to propeller leading edges. Fuel caps should be monitored for any deterioration periodically to avoid fuel leakage in flight or water infiltration.

The aircraft general condition should be noted during a visual inspection of the aircraft. Inspect any signs of deterioration, distortion and any damages to fabric skin of the aircraft. In cold weather, all traces of ice, snow, and frost should be removed from the aircraft. Make sure that no ice, snow or debris is trapped between any movable control surfaces.


Make sure that all instruments are in good condition with no broken glass. Airspeed indicator should read zero, altimeter should be checked against ramp or field elevation.

Do not activate the electrical system when anyone is near the propeller to prevent injury that could possibility result from an electrical system malfunction.

Pay special attention to the propeller area – make sure the ignition and master switches are OFF before touching the propeller. Avoid touching propeller when possible to prevent possible injury resulting from electrical system malfunction.

WARNING DO NOT FLY THE AIRCRAFT IF YOU FIND ANY DAMAGE OR PROBLEMS DURING A PRE-FLIGHT INSPECTION. ALWAYS CONSULT AUTHORISED PERSONNEL FOR REPAIRS

9.1.1 Daily Preparation



1. Cockpit

POH and other documentation review and available to pilot

| master switch              | OFF                       |
|----------------------------|---------------------------|
| ignition                   | OFF                       |
| fuel valves                | OPEN, fuel quantity check |
| instruments                | INSPECT                   |
| safety belts               | INSPECT                   |
| check of flaperon tie rods | INSPECT                   |

| control stick            | INSPECT, freedom of movement         |
|--------------------------|--------------------------------------|
| rudder pedals            | INSPECT, freedom of movement         |
| brakes                   | INSPECT                              |
| trim                     | freedom of movement, proper function |
| engine controls          | INSPECT, freedom of movement         |
| loose objects in cockpit | remove                               |
| cockpit windows          | INSPECT                              |
| door                     | INSPECT, shut and locked             |

2. Main landing gear

|          | gear legs and a              | ttachment INSPECT                                                               |
|----------|------------------------------|---------------------------------------------------------------------------------|
|          | wheels                       | INSPECT, tyre pressure 29 PSI                                                   |
|          | brakes                       | INSPECT                                                                         |
| 3.<br>4. | Wings<br>Pitot tube          | INSPECT – wing, struts, hinges, surface<br>INSPECT                              |
| 5.       | Flaperons                    | INSPECT –hinges, surface<br>freedom of movement                                 |
|          |                              | counterweights attachment.                                                      |
| 6.       | Rear cockpit cover           | INSPECT, secured                                                                |
| 7.       | Fuselage                     | INSPECT                                                                         |
| 8.       | Stabilizer, elevator, hinges | INSPECT –surface, hinges, attachment<br>of stabilizer struts                    |
|          |                              | freedom of movement of elevator and trim tab.                                   |
| 9.       | Fin, rudder, hinges          | INSPECT surface, attachment, freedom of movement                                |
|          |                              | condition and attachment of balance tab.                                        |
| 10       | Nose wheel                   | INSPECT, tyre pressure – 29 PSI                                                 |
| 11.      | Propeller                    | INSPECT / blades, propeller hub, check of locking propeller nuts (when visible) |

12. Engine

Remove the top engine cowling and

**INSPECT** - engine mount

INSPECT - air intake, carburettors and controls

INSPECT - exhaust system

INSPECT – coolant, quantity (0.4 inch above bottom) - (between MIN and MAX marks), leakages –(see picture 1)



INSPECT – oil, quantity (between MIN and MAX marks), leakages. The oil level should be at least in the middle between marks when planning a long term operation.

INSPECT - fuel system, filter and carburettors

INSPECT - electrical system, ignition, cable connections

### 13. Fuel

Quantity (between MIN and MAX, at least middle for longer flights)

INSPECT - draining off water and dirt from the central tank. Fuel system must be sampled daily to assure lack of contamination. Inspect the type of fuel.

Fuel caps secured, correct vent orientation - open end against air in flight.

### 9.1.2 Engine Warm-Up, Power Check

- wheels chocked, brakes on.
- Start the engine see section 9.2
- warming-up to operating temperature as per the Rotax instructions and until the oil temperature reaches 50 deg C
- temperature and pressure values within operating limits
- set maximum power speed of about 5000 RPM (3 to 5 secs.). The maximum RPM may vary with vary with temperature and propeller setting

- check of ignition (magnetos) set 3,850 RPM, RPM drop should not exceed 300 on either magneto nor 120 differential between magnetos.
- Idle rotation 1600 RPM
- All engine instrument readings must not exceed operating limits under any rating
- Remove wheel chocks for further operation, secure the aircraft

#### CAUTION

Perform the engine check heading upwind. Do not carry it out on loose terrain. Nobody is allowed to stand within dangerous proximity and, in particular, within the propeller arc Select proper aircraft orientation – propeller blast can be surprisingly powerful.

CAUTION

The engine is cowled for optimum cooling during flight. Use high power settings for limited time only during ground operation to avoid engine overheating

### CAUTION

After a check of engine power, cool down the engine for a short time to avoid evaporation of the cooling liquid in cylinder heads.

#### 9.1.3 Pre-Flight Inspection

Make a brief walk around before you board the aircraft. This short inspection might discover damage or problems when occurred during the last flight. It is especially important to make this inspection when you are taking over the aircraft from other pilot.

Use chocks for main wheels when possible and practical to prevent the aircraft from moving. Always make sure that the person you asked to remove your chocks while the engine is running is aware of propeller danger. The best practise is to use chocks only for engine warm-up and engine checks and shut the engine down and remove chocks with the engine stopped. Before using chocks make sure they do not make contact with wheel spats to prevent any damage.

Cockpit - INSPECT COCKPIT INTERIOR EQUIPMENT

- INSPECT SAFETY BELTS

- CONTROL SYSTEM-FREEDOM OF MOVEMENT, CHECK FOR DAMAGE

wings

- INSPECT WING AND STRUTS SUSPENSIONS

- INSPECT WING SURFACES

- INSPECT FLAPERONS.

 Fuselage
 - INSPECT

 tail unit
 - INSPECT

landing gear - INSPECT

engine and propeller - INSPECT.

### 9.2 Engine starting

Lack of oil pressure within 10 seconds after engine starting can lead to serious engine damage.

Make sure people or objects are near the propeller when staring the engine. Shout CLEAR PROP.

9.2.1 Use of External Power Supply

If the aircraft is not provided with a connection for external power supply the external power supply may be connected to battery contacts when necessary.

#### 9.2.2 Engine Starting

- pre-flight inspection COMPLETED - safety belts ADJUST AND SECURE - rudder pedals FREEDOM OF MOVEMENT - brakes CHECK FUNCTION - control stick FREEDOM OF MOVEMENT FREEDOM OF MOVEMENT - trim - wing flaps FREEDOM OF MOVEMENT. RETRACTED - engine control + choke FREEDOM OF MOVEMENT - instruments CHECK OF VALUES, SETTINGS

www.aeropro.sk and www.eurofoxuk.co.uk

| ~~ <b>PP-</b>                                                        |                                                                                               |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| - door                                                               | CLOSED, LOCKED                                                                                |  |  |
| - master switch                                                      | SWITCH ON                                                                                     |  |  |
| - main fuel cock                                                     | OPEN                                                                                          |  |  |
| - wing tank fuel cocks                                               | OPEN TO TANK WITH MORE FUEL                                                                   |  |  |
| - choke<br>ONLY)                                                     | SWITCH ON (COLD ENGINE                                                                        |  |  |
| - throttle                                                           | 1/3 OF TRAVEL (IDLE for cold engine)                                                          |  |  |
| - control stick                                                      | PULLED (clamped between legs)                                                                 |  |  |
| - brakes                                                             | ON                                                                                            |  |  |
| - propeller area                                                     | "CLEAR"                                                                                       |  |  |
| - ignition                                                           | SWITCH ON                                                                                     |  |  |
| - starter                                                            | SWITCH ON (10 sec as maximum without interruption, followed by a cooling period of 2 minutes) |  |  |
| - after starting the engine, adjust speed to smooth operation - IDLE |                                                                                               |  |  |

| - instruments | CHECK<br>pressure<br>seconds.<br>permitted<br>readings a | must<br>Increas<br>only at | rise<br>e of eng<br>steady | within<br>ine spee |  |
|---------------|----------------------------------------------------------|----------------------------|----------------------------|--------------------|--|
| - choke       | SWITCH                                                   | OFF (c                     | old engir                  | ne only)           |  |
|               |                                                          |                            |                            |                    |  |

- avionics and other switches SWITCH ON (transceiver, IC, turnand- slip indicator .....)

The aircraft has a tendency to roll forward easily on paved surfaces like asphalt even when the engine is at idle. A tail wind is also a significant factor. Make sure that the aircraft is not moving once the engine is started. If the aircraft is rolling and cannot be stopped with brakes, turn the engine off immediately using the ignition switch.

### 9.3 Taxiing

9.3.1 Prior to Taxiing

Be aware of the entire area around the aircraft to ensure that the aircraft will clear all obstruction and other aircraft. When first beginning to taxi,

the brakes should be tested for proper operation as soon as the aircraft is put in motion. If braking action is unsatisfactory, the engine should be shut down immediately.

- brakes

FUNCTIONAL CHECK

- stop watch

SWITCH ON, record time

#### 9.3.2 Taxiing

- taxiing speed is 8 knots maximum. Steering is performed by rudder pedals controlling the nose wheel.
- in crosswind hold ailerons "upwind", using the control stick.

- In strong crosswind taxi the aircraft with an assisting person holding the wing by its windward side.

- When taxiing on gravel surfaces use as low engine power as possible to prevent damage to the propeller leading edges.

### 9.4 Normal takeoff

#### 9.4.1 Prior to Take-Off

| - brakes              | BRAKES ON                                                               |
|-----------------------|-------------------------------------------------------------------------|
| - speed               | 3,850 RPM                                                               |
| - magnetos            | CHECK (R, BOTH, L, BOTH)                                                |
| - carburettor heating | ACTIVATE WHEN NECESSARY                                                 |
| - choke               | OFF                                                                     |
| - trim                | NEUTRAL                                                                 |
| - wing flaps          | TAKE-OFF POSITION                                                       |
| - master switch       | ON                                                                      |
| - ignition            | ON                                                                      |
| - main fuel valve     | OPEN                                                                    |
| - tank fuel valves    | FUEL QUANTITY CHECK, OPEN<br>TO BOTH OR TANK WITH MORE<br>FUEL QUANTITY |
| - instruments         | CHECK                                                                   |
| - door                | CLOSED, LOCKED                                                          |

- safety belts
   controls
   FREEDOM OF MOVEMENT
- runway not occupied by another aircraft

#### 9.4.2 Take-Off

Continuously increase engine power to maximum (max. 5800 RPM is not to be reached when aircraft is not moving and the propeller is not "in flight adjustable"), bringing the aircraft into motion. At a speed above 45 Mph IAS rotate the aircraft by slight pulling. Do not climb before the airspeed of 55 IAS is reached.

Then make a transition to the climb out, get the aircraft to climb at a speed of 65 IAS. Accelerate during initial climb to 75 Mph IAS unless the best angle of climb is required. Maintain the airspeed for best climb angle carefully, do not let the speed drop below 70 Mph IAS.

| - throttle            | FULL                                |
|-----------------------|-------------------------------------|
| - engine instruments  | CHECK                               |
| - elevator control    | ROTATE at 50 KIAS by slight pulling |
| - initial climb speed | 70 Mph IAS                          |
| - engine instruments  | CHECK                               |
| - wing flaps          | slowly FLAPS UP ABOVE 150 FT        |
| - trimming            | TRIM                                |

#### WARNING

Take-off is forbidden - if engine running is not smooth. - if runway is occupied.

Perform a brief magneto check before take off after positioning the aircraft clear of other aircraft. When a magneto problem is present, do not take off. Monitor power and engine RPM early during take off run – if the engine RPM is lower than usual (exact RPM value depends on propeller settings) or engine is not running smoothly abort the take off immediately.

If taking off the from a gravel surface apply the power slowly to prevent propeller leading edge damage.

Always retract wing flaps slowly – sudden retraction of the flaps might cause a loss of attitude.

Always judge, based on your experience, whether the available runway is sufficient for normal take off. Always make a realistic estimate and be ready to abort the take off before critical speed is reached.

### 9.5 Best angle of climb speed (V<sub>X</sub>)

9.5.1 Climbing

| - throttle           | 5,500 PRM MAX |
|----------------------|---------------|
| - airspeed           | 70 Mph IAS    |
| - engine instruments | CHECK         |

### 9.6 Best rate of climb speed (V<sub>y</sub>)

9.6.1 Climbing

| - speed              | 5,500 PRM MAX |
|----------------------|---------------|
| - airspeed           | 75 Mph IAS    |
| - engine instruments | CHECK         |

### 9.7 Cruise

- 9.7.1 Cruise Flight
  - bring the aircraft into horizontal flight

| - speed              | 4,000 – 5,500 RPM                                                        |
|----------------------|--------------------------------------------------------------------------|
| - airspeed           | 70 – 110 Mph IAS as required                                             |
| - engine instruments | CHECK                                                                    |
| - fuel tank valves   | SWITCH BETWEEN TANKS (open<br>one side and close the other)<br>regularly |

During cruising flight an RPM up to 5,500 can be used. Always monitor all engine parameters during cruise flight, especially when high engine settings are set. Higher RPM means higher speed, but fuel consumption

will increase significantly at the same time. An RPM setting around 4,500 is usually the best compromise between time and fuel consumption. A propeller setting is always an important factor. Monitor minimum fuel bulb indication condition by pushing control button when you expect minimum fuel quantity (4 litres).

Monitor the atmospheric condition as well – do not enter an area of turbulence at a high speed. Be ready for a sudden weather change during your flight – stronger head wind can limit your ability to safely reach your planned destination.

When carburettor icing is possible, activate carburettor heating. Fuel consumption and remaining fuel on board should be monitored. Always make a comparison between planned and actual time above any waypoint.

Select carefully the flight route – avoid flying over large urban areas, large forests or large areas of water, as well as over mountains. Good landing possibilities are very limited in case of engine failure or other emergencies over these areas.

Always have a suitable landing area within gliding range. When it is necessary to cross a large area not suitable for emergency landing, always climb to the appropriate altitude to reach a suitable landing site if an emergency occurs.

Always monitor the airspace around your to prevent a mid-air collision.

#### WARNING

Do not forget to change the wing tank supplying the engine on regular basis to prevent fuel starvation.

A proper fuel supply to the engine is provided by a central connecting tank whilst changing fuel wing tanks.

### 9.8 Approach

- 9.8.1 Descent
  - throttle

INCREASED IDLE OR AS REQUIRED

- engine instruments
- carburettor heating

CHECK

ACTIVATE WHEN NECESSARY

During long approaches and when descending from a WARNING considerable height, it is not advisable to reduce the engine throttle control to idle. In this case the engine becomes overcooled and a loss of power might occur. When descending, apply increased idle so that engine instrument readings range within the limits for normal use.

#### 9.8.2 Downwind

| - power                           | 4,000 – 5,000 RPM                                                   |
|-----------------------------------|---------------------------------------------------------------------|
| - airspeed                        | 75 – 90 Mph IAS                                                     |
| - engine instruments              | CHECK                                                               |
| - fuel                            | FUEL QUANTITY CHECK, SWITCH<br>TO TANK WITH MORE FUEL               |
| - brakes                          | CHECK FUNCTION BY SHORT<br>BRAKING (check proper system resistance) |
| -safety belts                     | TIGHTEN                                                             |
| - base leg and final leg airspace | CHECK OF FREE SPACE                                                 |
| - landing site                    | SITUATION                                                           |
|                                   |                                                                     |

### 9.9 Normal landing

| 9.9.1 | On Base Leg          |                         |
|-------|----------------------|-------------------------|
|       | - power              | 3,000 RPM               |
|       | - airspeed           | 75 Mph IAS              |
|       | - engine instruments | CHECK                   |
|       | - wing flaps         | TAKE-OFF                |
|       | - trimming           | TRIM                    |
|       | - final leg airspace | CHECK FOR OTHER TRAFFIC |
| 9.9.2 | On Final             |                         |

- 9.9.2 On Final
  - airspeed
  - power

55 Mph IAS ADJUST AS NEEDED

| - carburettor heating | ACTIVATE WHEN NECESSARY |
|-----------------------|-------------------------|
| - engine instruments  | CHECK                   |
| - wing flaps          | LANDING                 |
| - trimming            | TRIM                    |
| - engine instruments  | WITHIN LIMITS           |

- check of clear landing site (people, obstacles).

#### 9.9.3 Landing

Always judge, based on your experience, whether the available runway is sufficient for A normal landing. Always make a realistic estimation and be ready for baulked landings.

At a height of about 30 ft reduce the engine speed to idle. Maintain speed of 55 Mph IAS till flare. When flaring at a height of 1,5 to 3 ft above ground, decelerate gradually by pulling the control stick backward. At a speed of about 40 to 45 Mph IAS the aircraft touches-down.

When landing with a significant crosswind component do not set the flap to landing position – use take-off setting to touch down at higher speed to ensure proper control over the aircraft before it touches the ground.

Entry speed to side slip......75 Mph IAS

#### 9.9.4 After landing

| - brakes     | APPLY WHEN NECESSARY |
|--------------|----------------------|
| - wing flaps | RETRACT              |
| - trim       | TAIL HEAVY           |

#### 9.9.5 Engine Stopping

| - power | cool down the engine at 2,000 RPM when necessary |
|---------|--------------------------------------------------|
|---------|--------------------------------------------------|

| - engine instruments          | CHECK                       |
|-------------------------------|-----------------------------|
| - turn radio to 121,5         | CHECK ELT IS NOT ACTIVATED. |
| - avionics and other switches | OFF                         |
| - ignition                    | OFF                         |
| - master switch               | OFF                         |
| - avionics and other switches | OFF                         |

| - main fuel valve  | SHUT |
|--------------------|------|
| - tank fuel valves | SHUT |

- secure the aircraft chocks or other way to prevent the aircraft from unintended movement, lock the controls (using safety belts)

During normal operation the engine is usually cooled enough during the approach and landing. Make sure that all avionics and other instruments are switched off before the engine is stopped.

Do not use parking brake to hold unattended aircraft, especially when the aircraft is located in hanger.

#### 9.9.6 Post-Flight Check

| - check | <ul> <li>damage to fuel system. fuel leakage</li> </ul> |
|---------|---------------------------------------------------------|
|         |                                                         |

- damage to oil system, oil leakage
- damage to cooling circuit, liquid leakage
- damage to electrical system, ignition
- check the aircraft exterior for damage to:
- fuselage wings, flaperons
  - tail unit
  - landing gear
  - fiberglass covers

- wash down the aircraft, remove dirt and bugs

- cover the cockpit with a protective cover

### 9.10 Short field take off and landing procedures

The standard take off procedure should be followed. The only difference is that the full throttle is applied with brakes on – do not forget to have elevator in full up (stick back) position to prevent the danger of the aircraft nosing over. Brakes are released when the maximum RPM is achieved from the engine. To clear possible obstacles in the runway direction climb at speed for best rate of climb – see section 9.6

When approaching a short field make sure that the approach speed of 75 Mph IAS is carefully maintained and full flaps are set.

### 9.11 Balked landing procedures

| - power              | MAX. 5500 R.P.M            |
|----------------------|----------------------------|
| - airspeed           | 75 Mph IAS                 |
| - engine instruments | CHECK                      |
| - wing flaps         | TAKE-OFF                   |
| - trimming           | TRIM                       |
| - wing flaps<br>FT   | RETRACT AT A HEIGHT OF 150 |
| - trimming           | TRIM                       |
| - power              | MAX. 5500 RPM              |
| - climb              | 75 Mph IAS                 |

# 9.12 Information on stalls, spins and any other useful pilot information

WARNING

Aerobatics, intentional stalls and spins are prohibited.

#### 9.12.1 Rain

When flying in the rain, no additional steps are required. Aircraft qualities and performance are not substantially changed.

### 10. Aircraft Ground Handling and Servicing

### 10.1 Servicing fuel, oil, coolant

- 10.1.1 Servicing fuel
  - 1. Verify the main switch OFF position
  - 2. Remove fuel tank cap
  - 3. Service with fuel of proper type until level rises to the filler openings (or any required level)
  - 4. Replace fuel cap and check for security
  - 5. Wash any spilled fuel from wings with a clean water
  - 6. Repeat for opposite fuel tank.

It is not advisable to change the type of fuel during engine operation. Refuelling should be carried out in places not endangering either the aircraft, its pilots or the environment. Prior to refuelling it is always necessary to check fuel for the absence of water. Sampling should be carried out from both any jerry cans used and from all aircraft tanks via the fuel system through drain sump. When refuelling from a jerry can, a funnel must be used containing a strainer to trap impurities, or, even better, with a buckskin leather which can trap any fuel moisture content. Fuel tank draining is performed similarly by means of the drain valve.

When filling fuel into tanks, be careful to avoid staining the cockpit window panels and glass with fuel as it contains corrosive components that will cause fast deterioration and damage to cockpit glazing. Make sure that fuel tanks are closed when refuelling is finished.

#### 10.1.2 Servicing oil

The proper oil type should be used - see this manual or engine manual. .

- 1. Make sure that ignition and master switch are off
- 2. Remove the top engine cowling.
- 3. Open the oil tank.
- 4. When a level is not between minimum and maximum marks (or not high enough for expected longer operation), add oil. Do not add oil above the MAX level – the oil will overflow out of the engine.

- 5. Replace oil tank cap
- 6. Replace the top engine cowling

The oil is to be changed every 50 or 100 hours of operation – see Maintenance manual and engine documentation for details. The first oil change is to be performed after initial 25 hours of operation of a new or overhauled engine.

#### 10.1.3 Servicing coolant

The proper coolant type should be used – see this manual or Rotax engine manual.

- 1. Make sure that ignition and master switch are off
- 2. Remove the top engine cowling.
- 3. Remove the cap of the coolant tank
- 4. Add estimated quantity of coolant
- 5. Replace coolant tank cap
- 6. Replace the top engine cowling

### 10.2 Landing gear tyre dimension and pressure

| Track                                         | 1.96 m          |
|-----------------------------------------------|-----------------|
| Wheel base                                    | 1.3 m           |
| Main landing gear wheel tyre<br>Tyre pressure | 14x4<br>200 kPa |
| Nose wheel tyre<br>Tyre pressure              |                 |

### 10.3 Ground handling and tie-down instructions

- 10.3.1 Aircraft moving instruction
  - 1. Make sure that parking brake is off
  - 2. Check the space around the aircraft and in the proposed direction of movement
  - 3. Push and hold the tail down use handle located on fuselage close to rudder leading edge
  - 4. Push the aircraft in the desired direction

Aircraft can be also ground handled using a nose wheel tow bar – optional equipment, ask your dealer for details.

CAUTION Never push, pull, or lift the aircraft by use of control surfaces

10.3.2 Aircraft tie-down instruction

- 1. Turn the aircraft into wind, if possible
- 2. Lock the controls (using safety belts)
- 3. Make sure that parking brake is on, install wheel chocks when possible.
- 4. Attach ropes to the ring located on the lower wing surface (front strut attachment)
- 5. Attach rope the nose wheel
- 6. Attach rope to the tail (between tail skid and fuselage)
- 7. Secure all ropes to the tie-down points

It is recommended to install a soft foam rubber or fabric cover into the engine intakes to prevent foreign matter form accumulating inside the engine cowling. Before using make sure they do not collide with wheel fairings preventing any damage.

CAUTION

Never push, pull, or lift the aircraft by use of control surfaces

### 11. Required Placards and Markings

# **11.1** Airspeed indicator range markings and Overview of speed limits:

| Marking         |                                      | MPH (Indicated Air Speed) |     |                                                                                                                                                                                       | Operations      |  |
|-----------------|--------------------------------------|---------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Marking         |                                      | IAS                       |     | Operations                                                                                                                                                                            |                 |  |
| White Arc       |                                      | 41 ÷ 93                   |     | Flaps operating range. Lower limit<br>is maximum weight zero thrust<br>stall speed in the landing<br>configuration. Upper limit is<br>maximum speed allowable with<br>flaps extended. |                 |  |
| Green Arc       |                                      | 50 ÷ 109                  |     | Normal operating range. Lower<br>limit is maximum weight zero<br>thrust stall with flaps retracted,<br>upper limit is manoeuvring speed.                                              |                 |  |
| Yellow Arc      |                                      | 109 ÷ 143                 |     | Caution range – Operation must be<br>conducted with caution and only<br>in smooth air                                                                                                 |                 |  |
| Speed           |                                      | IAS Mph                   |     | Remarks                                                                                                                                                                               |                 |  |
| V <sub>NE</sub> | Never exceed speed                   |                           | 143 | V <sub>NE</sub>                                                                                                                                                                       |                 |  |
| VA              | Manoeuvring speed                    |                           | 109 | V <sub>A</sub>                                                                                                                                                                        |                 |  |
| V <sub>FE</sub> | Maximum wing-flaps<br>extended speed |                           | 93  | V <sub>FE</sub>                                                                                                                                                                       |                 |  |
| V <sub>S0</sub> |                                      | Stall speed               | 41  |                                                                                                                                                                                       | V <sub>S0</sub> |  |
| V <sub>S1</sub> | Minimum steady flight<br>speed       |                           | 50  | V <sub>S1</sub>                                                                                                                                                                       |                 |  |

### 11.2 Operating limitation placard on instrument panel

| Manufacturer: AEROPRO s.r.o., 949 07 Nitra, Slovakia |                 |       |     |  |  |  |  |
|------------------------------------------------------|-----------------|-------|-----|--|--|--|--|
| Max. take-off weight:                                | 560 Kgs         |       |     |  |  |  |  |
| Empty weight:                                        | 289 Kgs         |       |     |  |  |  |  |
| Max baggage weight:                                  | 20 Kgs          |       |     |  |  |  |  |
| Min/Max cockpit load:                                | 55/220 Kgs      |       |     |  |  |  |  |
| Never exceed speed (Mph)                             | V <sub>NE</sub> | 143   | IAS |  |  |  |  |
| Max. Flap Extended speed (Mph)                       | $V_{FE}$        | 93    | IAS |  |  |  |  |
| Stalling speed - wings level, flaps down             | $V_{S0}$        | 41    | IAS |  |  |  |  |
| Loading limits                                       |                 | +4G - | -2G |  |  |  |  |

Or equivalent in knots

### 11.3 If parachute fitted

# WARNING – Emergency Parachute Pull handle to deploy WARNING – Danger rocket exit area Unapproved equipment – see POH

### 11.4 Passenger warning

This aircraft was manufactured in accordance with CS VLA airworthiness standards and does not conform to standard category airworthiness requirements.

### 11.5 "No intentional spins"

The following placard should be located on the instrument panel

## AEROBATICS and INTENTIONAL SPINS ARE PROHIBITED

### 11.6 Miscellaneous placards and markings

Occupant warning - to be placed inside cabin

# This aircraft has not been certified to an international requirement

To be placed by the fuel tank filler cap

# Fuel tanks capacity: 86 litres Fuel specification: Mogas EN228 Min Ron 90 or AVGAS 100LL

To be placed inside cabin

# No Smoking Approved for flight in VFR conditions

To be placed on the panel in view of the pilot

| Engine Limitations        |              |  |  |  |  |  |
|---------------------------|--------------|--|--|--|--|--|
| Max take off (5 min max): | 5800 rpm     |  |  |  |  |  |
| Max continuous:           | 5500 rpm     |  |  |  |  |  |
| Idle (Approx)             | 1600 rpm     |  |  |  |  |  |
| Max CHT:                  | 150 Deg C    |  |  |  |  |  |
| Max Water Temp:           | 110 Deg C    |  |  |  |  |  |
| Max/Min Oil Temp:         | 140/50 Deg C |  |  |  |  |  |
| Max/Min Oil Pressure:     | 1.5/7.0 Bar  |  |  |  |  |  |
| Max/Min Fuel Pressure:    | 0.15/0.4 Bar |  |  |  |  |  |

## 12. Supplementary information

### 12.1 Familiarisation flight procedures

The familiarisation flight procedure depends on the pilot's experience. The whole familiarisation should start with the careful study of this document (Pilot Operating Handbook and Flight training supplement). The maintenance manual should be read as well.

The recommended procedure for an experienced pilot usually consists of:

- Local flight of duration of approximately 30 minutes with instructor
- 5 to 10 circuits with instructor
- 5 flights emergency situations
- local flight of 30 minutes solo
- 5 circuits solo

Always perform as many flights as required to be able to properly control the aircraft, the syllabus above is for reference only.

### 12.2 Pilot operating advisories

It is always recommended that familiarisation flights should take place on fine weather days

### **12.3 Further Information**

Further study is available from many books, pelase consult the lates recommendations from the LAA. Another invaluable source is other pilots and instructors.

### 12.4 Starting and pre-flight checks

Starting, pre-flight, pre take off and pre landing check lists. This list is a guide and requirements will vary depending on the exact fit of the individual aircraft. It is recommended that the pilot compiles his or her own list using this table as a guide only.

| Starting                      |                             |  |  |  |
|-------------------------------|-----------------------------|--|--|--|
| Park brake                    | Ŏn                          |  |  |  |
| Doors                         | Closed and secure           |  |  |  |
| Harnesses                     | Secure and comfortable      |  |  |  |
| Radio and TX                  | Off                         |  |  |  |
| Flap                          | Neutral                     |  |  |  |
| Master switch                 | On                          |  |  |  |
| Strobe landing light          | On                          |  |  |  |
| Fuel tap + pump               | On and on                   |  |  |  |
| Mags                          | On                          |  |  |  |
| Throttle + Choke              | Set, choke on               |  |  |  |
| Lookout                       | Clear prop                  |  |  |  |
| Start                         | Turn starter                |  |  |  |
| Oil P &T                      | Check, Oil P rising?        |  |  |  |
| Starter engage and volt light | Light out                   |  |  |  |
| Pre-flight                    | / Take off                  |  |  |  |
| Throttle                      | 2000 rpm                    |  |  |  |
| Flying Controls               | Full and free               |  |  |  |
| Doors and Harness             | Closed, locked, secure      |  |  |  |
| Stowage items                 | Secure                      |  |  |  |
| Radio TX                      | On                          |  |  |  |
| Trim                          | Set take off                |  |  |  |
| T & P's                       | All in range                |  |  |  |
| RPM – Mag check               | Up to 3800 rpm check        |  |  |  |
| Choke                         | Off                         |  |  |  |
| Fuel and pump                 | Sufficient on and on        |  |  |  |
| Flaps                         | Set take off                |  |  |  |
| Lookout and line up           | Check all clear             |  |  |  |
| Land                          |                             |  |  |  |
| Brakes                        | Check pressure OK           |  |  |  |
| Undercarriage                 | Check no damage             |  |  |  |
| Propeller                     | Set fine if VP              |  |  |  |
| Fuel and pump                 | Sufficient on and on        |  |  |  |
| Flaps                         | Set landing as POH          |  |  |  |
| Landing light                 | On                          |  |  |  |
| Instruments                   | T & P's all ok              |  |  |  |
| Carb heat                     | Set as required             |  |  |  |
| Doors and harnesses           | Closed, locked, secure      |  |  |  |
| Park and shutdown             | Hope you enjoyed the flight |  |  |  |